最近,翔叔看到了一则爆炸性新闻——Google AI大战乳腺癌,现在进入2.0时代!
01
02
如上图所示,左侧:包含淋巴结的载玻片有多个组学伪影:左边较暗区域是气泡,白色条纹是切割组学伪影,一些区域的红色显示出血(含有血液),组织已经坏死(衰竭),治疗质量较差。右侧:LYNA 识别出肿瘤区域在中央(呈红色),并正确地对非肿瘤区域进行分类(呈蓝色) 。
LYNA是基于开源图像识别深度学习模型Inception-v3开发出来的,该模型在斯坦福大学ImageNet数据集中的准确率超过78.1%。正如研究人员解释的那样,在训练过程中,它以299像素的图像作为输入,在像素水平描述出组织贴片中的肿瘤,提取标签,并调整模型的算法权重以减少误差。
该团队改进了之前发布的算法,将LYNA暴露于正常组织与肿瘤斑块之比为4:1的环境中,并提高了训练过程的“计算效率”,这反过来会促使算法“看到”更多的组织多样性。此外,研究人员还对活检切片扫描的变化进行了规范化,他们说这在更大程度上提高了模型的性能。
研究人员将LYNA应用于检测淋巴结2016年挑战数据集(Camelyon16)的癌症转移诊断,Camelyon16中有399张淋巴结的幻灯片图片,它们来自荷兰拉德堡大学医学中心、荷兰乌得勒支大学医学中心,以及20名患者的108张单独照片。